Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Food Sci ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578125

RESUMEN

Tomato leather as a healthy alternative to traditional fruit leathers was formulated. A tray dryer with changing temperature (50, 60, and 70°C) and relative humidity (5%, 10%, and 20%) was used to achieve the best product in terms of color, water distribution, lycopene content, mechanical, and sensorial properties. Color change was the highest at 70°C due to the Maillard reaction. Lycopene content was also the highest at 70°C. Time domain-NMR relaxometry showed that water distribution of all samples was homogeneous and similar to each other. Processing conditions affected mechanical properties significantly. The highest tensile strength was observed at 70°C, possibly due to the denatured proteins. Sensory analysis indicated better flavor development at 70°C, whereas overall acceptability of samples was higher at 50°C. The results of this study showed the main processing parameters of tomato leather with a minimal amount of ingredients, with acceptable mechanical and sensorial properties. PRACTICAL APPLICATION: Tomato leather was produced by using minimal amount of ingredients. Taste of the leather was found acceptable, as a salty snack food. Therefore, this product can be produced economically and it has a high potential to be consumed as an alternative to conventional fruit leathers.

2.
J Sci Food Agric ; 104(1): 83-92, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37566724

RESUMEN

BACKGROUND: Tomato is an indispensable ingredient of the Mediterranean diet. Reformulation of traditional Mediterranean products to increase the adherence of consumers is becoming popular. In this study, a tomato snack bar enriched with olive powder and pea protein was developed by using microwave-vacuum drying. Formulations also included tomato powder (TP) and low-methoxylated pectin (LMP) as a structuring agent. RESULTS: The moisture content of microwave-vacuum-dried samples varied in the range 13.6-19.8% and water activity (aw ) values were ~0.6. LMP and TP concentrations affected the color of microwave-vacuum-dried samples. However, the color mainly changed in conventionally dried samples due to browning. In microwave-vacuum-dried samples, lycopene content decreased with increasing LMP, but increased with increasing TP. Textural properties of microwave-vacuum-dried snack bars increased with increasing LMP and TP. CONCLUSION: Both texture and Fourier transform infrared spectroscopy results indicated that there was a network formation due to the contribution of protein and pectin; however, the type of interaction was highly dependent on the drying mechanism. Nuclear magnetic resonance relaxometry data showed that microwave-vacuum-dried samples had a more uniform water distribution. Besides its time and energy efficiency, microwave-vacuum drying improved the color and textural properties of tomato snack bars compared to conventionally dried ones. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Solanum lycopersicum , Microondas , Vacio , Polvos , Bocadillos , Desecación/métodos , Agua , Pectinas
3.
J Phys Chem B ; 127(41): 8950-8960, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37812396

RESUMEN

Water dynamics in mesoporous dextran hydrogel micro/nanoparticles was investigated by means of nuclear magnetic resonance (NMR) techniques. High-resolution 1H NMR spectra and pulsed field gradient (PFG) NMR diffusometry measurements obtained on swollen state dextran micro/nanogel revealed the existence of different fractions of water molecules based on their interaction with the gel matrix. In addition to the translational diffusion of bulk water, two more diffusion processes characterized with self-diffusion coefficients 1 and 2 orders of magnitude smaller than that of bulk water were identified. 1H spin-lattice relaxation dispersion profiles obtained for a broad range of Larmor frequencies using fast field cycling (FFC) and conventional NMR relaxometry techniques allowed us to further clarify the mechanisms of molecular motion. According to the water proton pool fractions and associated self-diffusion coefficients, it is shown that the relaxation contribution associated with reorientation-mediated translational motions (RMTDs) dominates the relaxation dispersion observed at intermediate frequencies. At very low frequencies, the spin-lattice relaxation rate is dominated by the slow solid-gel dynamics probed by the water molecules interacting with the pores' surface hydroxyl groups due to the rapid chemical exchange between surface hydroxyl groups and free water. The correlation time for the thumbling-like motion of the dextran gel was found to be in the submillisecond range. The values of the self-diffusion and coherence lengths associated with motion of water molecules interacting with the solid-gel particles are consistent with the particle size and pore size distributions obtained for the studied dextran gels.

4.
Food Chem ; 428: 136817, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37459678

RESUMEN

The different types of sugar employed in the food industry exhibit chemical similarity and are mostly dominated by sucrose. Owing to the sugar origin of and differences in production, the presence of certain minor organic compounds differs. To differentiate between sugars based on their botanical source, geographical origin, or storage conditions, commercial brown sugars and sugar beet extracts were analyzed by 1H NMR spectroscopy applying a segmented analysis by means of multivariate curve resolution-alternating least squares (MCR-ALS). Principal component analysis and partial least squares-discriminant analysis yielded excellent differentiation between sugars from different sources after the application of this preprocessing strategy; without loss of chemical information and with direct interpretation of the results. By applying a segmented analysis via MCR-ALS to 1H NMR sugar data, similar spectroscopic profiles could be differentiated. This improved the selectivity of 1H NMR spectroscopy for sugar source differentiation which can be useful for industrial sugar authentication purposes.


Asunto(s)
Carbohidratos , Azúcares , Análisis Multivariante , Análisis de los Mínimos Cuadrados , Espectroscopía de Resonancia Magnética
5.
J Agric Food Chem ; 71(23): 9157-9163, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37276611

RESUMEN

Interest in alternative plant-based protein sources is continuously growing. Sugar beet leaves have the potential to satisfy that demand due to their high protein content. They are considered as agricultural waste and utilizing them as protein sources can bring them back to the food chain. In this study, isoelectric-point-precipitation, heat-coagulation, ammonium-sulfate precipitation, high-pressure-assisted isoelectric-point precipitation, and high-pressure-assisted heat coagulation methods were used to extract proteins from sugar beet leaves. A mass spectrometry-based proteomic approach was used for comprehensive protein characterization. The analyses yielded 817 proteins, the most comprehensive protein profile on sugar beet leaves to date. Although the total protein contents were comparable, there was a significant difference between the methods for low-abundance proteins. High-pressure-assisted methods showed elevated levels of proteins predominantly located in the chloroplast. Here we showed for the first time that the extraction/precipitation methods may result in different protein profiles that potentially affect the physical and nutritional properties of functional products.


Asunto(s)
Beta vulgaris , Proteómica , Beta vulgaris/metabolismo , Proteínas de Plantas/metabolismo , Hojas de la Planta/metabolismo , Azúcares/metabolismo
6.
J Food Sci ; 88(8): 3274-3286, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37350070

RESUMEN

Sucrose, obtained from either sugar beet or sugarcane, is one of the main ingredients used in the food industry. Due to the same molecular structure, chemical methods cannot distinguish sucrose from both sources. More practical and affordable methods would be valuable. Sucrose samples (cane and beet) were collected from nine countries, 25% (w/w) aqueous solutions were prepared and their absorbances recorded from 200 to 1380 nm. Spectral differences were observable in the ultraviolet-visible (UV-Vis) region from 200 to 600 nm due to impurities in sugar. Linear discriminant analysis (LDA), classification and regression trees, and soft independent modeling of class analogy were tested for the UV-Vis region. All methods showed high performance accuracies. LDA, after selection of five wavelengths, gave 100% correct classification with a simple interpretation. In addition, binary mixtures of the sugar samples were prepared for quantitative analysis by means of partial least squares regression and multiple linear regression (MLR). MLR with first derivative Savitzky-Golay were most acceptable with root mean square error of cross-validation, prediction, and the ratio of (standard error of) prediction to (standard) deviation values of 3.92%, 3.28%, and 9.46, respectively. Using UV-Vis spectra and chemometrics, the results show promise to distinguish between the two different sources of sucrose. An affordable and quick analysis method to differentiate between sugars, produced from either sugar beet or sugarcane, is suggested. This method does not involve complex chemical analysis or high-level experts and can be used in research or by industry to detect the source of the sugar which is important for some countries' agricultural policies.


Asunto(s)
Beta vulgaris , Saccharum , Sacarosa/química , Beta vulgaris/química , Saccharum/química , Quimiometría , Carbohidratos/análisis , Azúcares , Análisis Espectral , Análisis de los Mínimos Cuadrados , Grano Comestible/química
7.
Molecules ; 28(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903475

RESUMEN

1H spin-lattice Nuclear Magnetic Resonance relaxation studies have been performed for different kinds of Haribo jelly and Vidal jelly in a very broad frequency range from about 10 kHz to 10 MHz to obtain insight into the dynamic and structural properties of jelly candies on the molecular level. This extensive data set has been thoroughly analyzed revealing three dynamic processes, referred to as slow, intermediate and fast dynamics occurring on the timescale of 10-6 s, 10-7 s and 10-8 s, respectively. The parameters have been compared for different kinds of jelly for the purpose of revealing their characteristic dynamic and structural properties as well as to enquire into how increasing temperature affects these properties. It has been shown that dynamic processes in different kinds of Haribo jelly are similar (this can be treated as a sign of their quality and authenticity) and that the fraction of confined water molecules is reduced with increasing temperature. Two groups of Vidal jelly have been identified. For the first one, the parameters (dipolar relaxation constants and correlation times) match those for Haribo jelly. For the second group including cherry jelly, considerable differences in the parameters characterizing their dynamic properties have been revealed.

8.
J Texture Stud ; 54(2): 334-346, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36790745

RESUMEN

The physical characterization of chocolate products is vital in manufacturing, and the chocolate's processing time and composition directly influence physical properties, such as rheology and melting. The objective of this study was to investigate the effects of processing time and the ingredient types on the physical properties of milk chocolates containing soy milk powder and soy protein isolate. Characteristics of skimmed milk chocolate (SMC) and whole milk chocolate (WMC) were compared to soy milk chocolate and soy protein chocolate (SPC). Rheological data of chocolate products were fitted to Casson, Herschel-Bulkley, and Bingham models. The highest viscosity was observed for SPC samples, whereas yield stress was the highest for SMC samples after 2 hr of processing. The increase in milk and soy fats in the formulation softened the texture and decreased the whiteness index significantly (p < .05). PSD results show that SPC had the highest D90 (40.1 µm) and the lowest specific surface area (893 m2 /kg) after 6 hr of processing. SPC samples had the narrowest particle size distribution observed by the span values. X-ray diffraction analysis showed that all the samples had the desired Form V, crystal form. The differential scanning calorimetry thermogram was used to determine phase transitions and melting behaviors. At the end of processing, melting enthalpies (ΔHmelt ) were significantly lower (p < .05) in milk chocolates.


Asunto(s)
Cacao , Chocolate , Chocolate/análisis , Polvos , Glycine max , Proteínas de Soja , Cacao/química
9.
ACS Food Sci Technol ; 2(12): 1819-1831, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36570038

RESUMEN

Turkish delights were formulated by using sucrose (control) and different types of corn syrups (having varying glucose/fructose ratios) and allulose syrup. 30% allulose syrup and 30% sucrose-containing Turkish delights were found to exhibit an amorphous structure. Time-domain NMR relaxometry experiments were also conducted on delights by measuring T 2 relaxation times, and two distinct proton populations were observed in all formulations. The use of different syrup types at different substitution levels led to significant changes in the relaxation times (T 2a and T 2b) of the samples, indicating that the relaxation spectrum might be used as a fingerprint for Turkish delights containing different types and amounts of syrup types. Second moment (M 2) values which were measured from the signal acquired using a magic sandwich echo pulse sequence were also found to be an effective and promising indicator to detect the crystallinity of Turkish delights.

10.
Food Res Int ; 160: 111682, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36076391

RESUMEN

Whey is a high nutritional value by-product of the dairy industry. It is generally produced in large quantities and its disposal as wastewater poses environmental risks. For this reason, whey streams are used for the production of value-added products such as dried whey powders. However, there are several challenges related to whey processing that lead to low powder yield and quality, especially caking. These challenges can be addressed by optimization of product formulation and processing parameters. In this review, we discuss the effects of dried whey protein powder production stages and process parameters on the quality of the final powder product. The initial composition of whey used for dried whey powder production affects the final quality of the product. Generally, a high mineral and/or lactic acid content is not desirable since these constituents cause lactose-containing whey particles to adhere to the drying equipment surfaces, thereby reducing the powder yield. An effective lactose pre-crystallization is essential since high amorphous lactose content increases the stickiness of the dried-whey powder particles and induces caking during storage. Therefore, whey should undergo filtration and lactose pre-crystallization before spray drying. Studies show that it is possible to retard caking and improve the quality attributes of dried whey powders by optimizing the product formulation and processing operations.


Asunto(s)
Lactosa , Suero Lácteo , Productos Lácteos , Lactosa/química , Polvos/química , Suero Lácteo/química , Proteína de Suero de Leche/química
11.
Foods ; 11(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35454735

RESUMEN

The hydration behavior of sugars varies from each other and examining the underlying mechanism is challenging. In this study, the hydration behavior of glucose, fructose, allulose (aka rare sugar), and sucrose have been explored using different Time Domain Nuclear Magnetic Resonance (TD-NMR) approaches (relaxation times, self-diffusion, and Magic Sandwich Echo (MSE)). For that purpose, the effects of different sugar concentrations (2.5%, 5%, 10%, 15%, 20%, 30%, and 40%) (w/v) and hydration at different times for 1 day were investigated by T2 relaxation times and self-diffusion coefficients. Crystallinity values of the solid and hydrated sugars were also determined with MSE. Change in T2 relaxation times with concentration showed that the fastest binding with water (parallel with the shortest T2 values) was observed for sucrose for all concentrations followed by glucose, fructose, and allulose. Furthermore, dependency of T2 relaxation times with hydration time showed that sucrose was the fastest in binding with water followed by glucose, fructose, and allulose. The study showed that allulose, one of the most famous rare sugars that is known to be a natural low-calorie sugar alternative, had the lowest interaction with water than the other sugars. TD-NMR was suggested as a practical, quick, and accurate technique to determine the hydration behavior of sugars.

12.
Molecules ; 27(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35408623

RESUMEN

Starch-based confectionery products were prepared using different types of sugar. In addition to using different sugar, starch was replaced with soy protein isolate (SPI) in some of the products. 1H NMR spin-lattice relaxation experiments were performed for the collection of products in a broad frequency range from 4 KHz to 30 MHz to get insight into the influence of different sugar types and SPI on the dynamics of water in composite gel systems. The relaxation data have been decomposed into relaxation contributions associated with two different pools of water molecules characterized by different mobility. The translation dynamics of water molecules has been quantitatively described in terms of a dedicated relaxation model. The influence of the sample composition (the type of sugar and/or the presence of SPI) on the water mobility was thoroughly discussed. The results indicate that the addition of soy protein does not affect water dynamics for samples including sucrose. In addition, as the complementary measurements, physical properties of the products, such as the moisture content, water activity and texture, were investigated in terms of X-ray diffraction and thermogravimetric analysis.


Asunto(s)
Almidón , Agua , Espectroscopía de Resonancia Magnética , Proteínas de Soja/química , Almidón/química , Azúcares , Agua/química
13.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34575838

RESUMEN

Whey-protein-isolate-based composite hydrogels with encapsulated black carrot (Daucus carota) extract were prepared by heat-induced gelation. The hydrogels were blended with gum tragacanth, pectin and xanthan gum polysaccharides for modulating their properties. 1H spin-lattice relaxation experiments were performed in a broad frequency range, from 4 kHz to 30 MHz, to obtain insight into the influence of the different polysaccharides and of the presence of black carrot on dynamical properties of water molecules in the hydrogel network. The 1H spin-lattice relaxation data were decomposed into relaxation contributions associated with confined and free water fractions. The population of the confined water fraction and the value of the translation diffusion coefficient of water molecules in the vicinity of the macromolecular network were quantitatively determined on the basis of the relaxation data. Moreover, it was demonstrated that the translation diffusion is highly anisotropic (two-dimensional, 2D).


Asunto(s)
Hidrodinámica , Hidrogeles/química , Espectroscopía de Resonancia Magnética , Agua/química , Proteína de Suero de Leche/química , Algoritmos , Fenómenos Químicos , Modelos Teóricos
14.
J Agric Food Chem ; 69(41): 12089-12101, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34153190

RESUMEN

Turkish delights (lokum) are traditional confectionery products that contain mainly sucrose as the sugar source and starch as the gelling agent. However, manufacturers sometimes might prefer to use corn syrup instead of sucrose to decrease the cost. This jeopardizes the originality of Turkish delights and leads to production of adulterated samples. In this study, Turkish delights were formulated using sucrose (original sample) and different types of corn syrups (SBF10, SCG40, and SCG60). Results clearly indicated that corn-syrup-containing samples had improved textural properties and were less prone to crystallization. However, this case affected authenticity of the products negatively. Both time domain nuclear magnetic resonance (TD NMR) and fast field cycling nuclear magnetic resonance (FFC NMR) techniques were found to be effective to discriminate the original samples from the corn-syrup-containing samples. In addition, quantitative analysis of FFC NMR showed that, apart from the rotational motions, molecules in Turkish delights (mainly water and also sugar molecules) undergo two types of translational dynamics.


Asunto(s)
Dulces , Imagen por Resonancia Magnética , Geles , Espectroscopía de Resonancia Magnética , Agua
15.
J Food Sci ; 86(7): 3148-3158, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34146423

RESUMEN

The study was aimed to investigate characteristics of emulsion containing pectin, wax, maltodextrin, and carotenoid enriched flaxseed oil by means of stability, rheology, particle size, and low-resolution of time domain nuclear magnetic resonance (NMR) relaxometry measurements. Emulsions were prepared with different carotenoid enriched-flaxseed oil concentrations (6%, 9%, 12%, and 15% w/w) and ratios of maltodextrin/(pectin+wax) (3:1, 6:1, 9:1, and 12:1 g/g). Percentage separation of 12% oil 12:1 ratio of maltodextrin/(pectin+wax) (g/g), 15% oil 9:1, and 12:1 ratios of maltodextrin/(pectin+wax) (g/g) of emulsions was determined as 2.0 ± 0.5%, 4.0 ± 0.5%, and 8.0 ± 0.5%, respectively. No separation was observed in other emulsions. The rheological behavior of emulsions was best described by the power law model. When the concentration of pectin+wax in the emulsion decreased, the n values of the emulsions were close to 1, indicating that the fluid behavior approaches Newtonian behavior. Moreover, the emulsion viscosity was observed to increase when pectin and wax concentrations in the emulsion increased. The increase in pectin and wax concentration in emulsions with oil contents of 6% and 9% resulted in a reduction in the average particle size. However, if the oil concentration in the emulsions was 12% or more, the increase in the ratio of maltodextrin/(pectin+wax) (g/g) led to a decrease in the average particle size. NMR transverse relaxation times (T2 ) of emulsions were measured and results showed that T2 values for almost all formulations decreased when the ratio of maltodextrin/(pectin+wax) reduced. PRACTICAL APPLICATION: Study results demonstrated that the combination of pectin and wax together with maltodextrin as a filling material could be an alternative way to improve emulsion stability. Findings of this study provided useful guidance for the future studies about the potential use of pectin, wax, and maltodextrin as wall material in encapsulation of oils or in producing edible films.


Asunto(s)
Emulsiones , Aceites/química , Pectinas/química , Polisacáridos/química , Agua/química , Ceras/química , Reología , Viscosidad
16.
Molecules ; 26(3)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503910

RESUMEN

The aim of this study was to investigate and compare the effects of different extraction techniques (high hydrostatic pressure-assisted extraction (HHPE), ultrasound-assisted extraction (UAE), and classical solvent extraction (CSE)) on phenolic compounds from spent coffee grounds (SCG). Different HHPE parameters (300, 400 and 500 MPa at 25 °C for 5, 10 and 15 min) and UAE parameters (40%, 50%, and 60% amplitude at 25 °C for 5, 10 and 15 min) were used. These techniques were compared with CSE (at 50 °C for 30 min) according to total phenolic content (TPC), antioxidant activity (AA), high-performance liquid chromatography (HPLC), scanning electron microscopy (SEM), and infrared (IR) spectroscopy. The results showed that eco-friendly techniques increased the TPC and AA compared to CSE and morphological changes were verified by SEM results. Furthermore, chlorogenic and caffeic acid were also quantified by using HPLC. Chlorogenic acid was found as the main phenolic compound in spent coffee grounds (SCG). The highest chlorogenic acid was detected as 85.0 ± 0.6 mg/kg FW with UAE at 60% amplitude for 15 min. In brief, for the extraction of phenolic compounds from waste SCG eco-friendly techniques such as HHPE and/or UAE were more convenient than CSE.


Asunto(s)
Café/química , Fenoles/química , Antioxidantes/química , Ácidos Cafeicos/química , Ácido Clorogénico/química , Cromatografía Líquida de Alta Presión/métodos , Residuos
17.
J Food Sci ; 86(1): 120-128, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33336400

RESUMEN

Pectin-wax-based emulsion systems could be used to form edible films and coatings with desired water permeability characteristics. Pectin is often used in food industry due to its gelling and viscosity increasing properties. Physical properties of pectin are highly dependent on its esterification degree. Waxes are commonly used as edible coatings to enhance the water barrier properties of food products. This study focuses on preparing emulsions with sunflower oil wax (SFW) and high methoxyl pectin (HMP) at different concentrations for any possible edible film or coating formulations. Sunflower oil (SFO) was added as the dispersed oil phase to these emulsions. Characterization of the emulsions was performed by using particle size, rheology, and time domain nuclear magnetic resonance (NMR) relaxometry measurements. Effects of HMP concentration and the presence of SFO in the emulsion formulations were explored. Mean particle size values were recorded between 1 and 3 µm. Rheology measurements showed that increasing HMP concentrations and presence of SFO in emulsions resulted in more pseudoplastic behavior. NMR transverse relaxation times (T2 ) were measured to detect the differences between the emulsions. Relaxation spectrum analysis was also conducted for a detailed understanding of the transverse relaxations. Addition of SFO and higher HMP concentrations decreased the T 2 values of the emulsion systems (P < 0.05). However, T2 decreasing effect of SFO was compensated at 10% (w/w) HMP concentration showing that SFO was well dispersed in this particular emulsion formulation. Changes in the rheological behavior and relaxation times provided insight on the formation and stability of the emulsions. PRACTICAL APPLICATION: Findings of this study can be utilized and integrated to produce edible films and coatings with different water permeability characteristics. This study showed that NMR relaxometry parameters were also effective in monitoring and determining the physical characteristics of the pectin-wax-based emulsion systems as other conventional techniques including rheology and particle size measurements. Our NMR relaxometry findings were in correlation with the flow behavior and particle size results of the investigated emulsion systems.


Asunto(s)
Aditivos Alimentarios/química , Pectinas/química , Aceite de Girasol/química , Emulsionantes , Emulsiones/química , Geles , Espectroscopía de Resonancia Magnética , Tamaño de la Partícula , Permeabilidad , Reología , Viscosidad , Agua/química , Ceras/química
18.
J Food Sci ; 85(10): 3423-3431, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32918310

RESUMEN

Plant-based proteins gained importance in recent years due to the increase in the awareness of healthy diet and in the consumption of plant-based foods. However, some features of plant-based proteins like the undesirable odor and flavor affect the sensorial properties of protein containing foods. Therefore, encapsulation of these proteins could be a good strategy to tackle with this problem. The objective of this study was to design microcapsules (beads) consisting of pea protein by using sodium alginate and to investigate the effect of different alginate concentrations (1.0, 1.5, and 2.0%) on the protein content, encapsulation efficiency, particle size, bead stability, and the morphology of the capsules and then add them to different fruit juices (pomegranate and melon) and examine the release behavior from the capsules. Rheological behavior of the juices including pectin were also investigated. TD- nuclear magnetic resonance relaxometry analysis through T2 relaxation times was conducted on the capsules to observe the changes in the beads. In conclusion, alginate was found to be a suitable encapsulation coating for pea protein. Beads containing 1% alginate concentration was found to be the most effective with respect to protein content and bead stability. PRACTICAL APPLICATION: This study aims to design and characterize pea protein containing microcapsules capsules and their utilization in fruit juices. The study itself focused on a specific application on the fruit juices.


Asunto(s)
Alginatos/química , Manipulación de Alimentos/métodos , Jugos de Frutas y Vegetales/análisis , Proteínas de Guisantes/química , Cápsulas , Geles , Ácido Glucurónico , Ácidos Hexurónicos , Tamaño de la Partícula , Pectinas
19.
Int J Biol Macromol ; 164: 2051-2061, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32800951

RESUMEN

Quince seed powder (QSP) is known to exhibit emulsification properties and could be used as a natural emulsifier in colloidal food systems. In this study, emulsion-based alginate hydrogels were formulated using QSP and xanthan gum (XG) as stabilizers. The objective of the study was to show the emulsifying power of QSP in emulsions and their hydrogels using Time Domain (TD) NMR Relaxometry and Magnetic Resonance Imaging (MRI). Rheology and mean particle size measurements for emulsions and scanning electron microscope (SEM) experiments for hydrogels were further conducted as complementary methods. QSP containing emulsions were found to have longer T2 relaxation times than XG samples (p < 0.05). Addition of either QSP or XG produced a more pseudoplastic flow behavior (p < 0.05) on the emulsions. Relaxation times were also obtained by MR images through T2 maps. Relaxation decay curves showed the presence of two proton compartments in hydrogels; protons associated with the polymer matrix and protons interacting with the oil phase. The contribution of the first proton pools was the largest in QSP hydrogels confirmed by the lowest standard deviation in the T2 maps. This behavior was explained by the emulsification ability of QSP. Results showed that NMR Relaxometry and MR images could be used to understand the emulsifying nature of QSP and many other hydrocolloids.


Asunto(s)
Emulsionantes/química , Emulsiones/química , Hidrogeles/química , Polvos/química , Rosaceae/química , Semillas/química , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Tamaño de la Partícula , Polisacáridos Bacterianos/química , Protones , Reología/métodos
20.
Carbohydr Polym ; 229: 115469, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31826508

RESUMEN

Hydrogels are great systems for bioactive agent encapsulation and delivery. In this study, polysaccharide blended whey protein isolate (WPI) based hydrogels were loaded with black carrot (Daucus carota) concentrate (BC) and in vitro gastrointestinal release measurements were performed. Prior to 6 h digestion in simulated intestinal fluid (SIF), all hydrogels were exposed to simulated gastric fluid (SGF) for 2 h. Pectin (PC), gum tragacanth (GT) and xanthan gum (XG) were the polysaccharides used with WPI to manipulate the release behavior. Physico-chemical changes of the hydrogels throughout the digestion were evaluated by Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) relaxometry measurements. Each polysaccharide induced different physico-chemical interactions within the hydrogels due to their distinct structural characteristics. Polysaccharide blending to hydrogels also retarded the release rates in all samples in SIF (p < 0.05). Moreover, microstructural differences between hydrogels were evaluated by scanning electron microscope (SEM) images.


Asunto(s)
Hidrogeles/química , Pectinas/química , Polisacáridos Bacterianos/química , Tragacanto/química , Proteína de Suero de Leche/química , Daucus carota/química , Hidrólisis , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...